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SUMMARY

TheEarth's gravitational potential is usually expressed as an infinite
series of harmonics, and the values of harmonic coefficients of order 15 and 30
can be determined most accurately by analysis of satellite orbits which experi-
ence 15th-order resonance. The results from two recent resonance analyses, for
1965-09A and 1968-70A, have here been added to those previously available, to
produce an improved evcduaLiun of 44 coefficients of order 15 and degree 15-36,

and 12 coefficients of order 30 an even degree 30,32 .... 40.

Compared with previous r-Ults, the new evaluation shows a great improve-
ment in the standard deviations,,of many of the 15th-order coefficients of even
degree, thanks largely to the contribution of 1965-09A at inclination 31.8r3 for
the coefficients of degree 24, 26, 28 and 30, the atandard deviation ?sdY has
been reduced by a factor of 3.1 on average; and for degree 32, 34 and 36 by a
factor of 1.4 on average. For the other coefficients -.those of 30th order, and
odd-degree 15th order - the changes are relatively small. In the new 15th-order
solution, all the 30 coefficients of degree 15-29 have sd 2.0 x 10-'and the
average sd of these 30 values is equivalent to an error in geoid height of 0.7cm.
Comparison of our values with those in comprehensive geoid'models, which usually
have larger sd, lead us to conclude that, for orders 15 and 30, the nominal La'
standard deviations of the comprehensive models are quite realistic. '
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1 INTRODUCTION

Our previous evaluation of individual harmonic coefficients of order 15

and 30 from analysis of 25 satellites at 15th-order resonance can now be improved

in four ways. First, the recent analysis
2 

of the resonant variation in eccen-

tricity for 1965-09A, at inclination 31.80, gives a much stronger hold on coef-

ficients of even degree for degree 24; previously the lowest inclination used

0 ~30
was 430

. 
Second, the new and accurate analysis of 1968-70A at inclination 560,

which includes many Hewitt camera observations, provides further good values of

lumped harmonics of order 15 and 30. Third, we have corrected a mistake in the

value of one of the lumped 30th-order S harmonics previously used. The fourth

4
improvement , important in principle though hardly significant numerically, is

the replacement of an approximation for the functions Gpq by more accurate

values from the computer program GQUAD.

The format of this Report is similar to that of its predecessor 1: sections

2 to 4 offer a very brief outline of the notation, the data used and the method

of solution. Sections 5 to 9 give the solutions for the harmonic coefficients

obtained on taking account of the first three of the four improvements mentioned

above. In section 10 we take account of the fourth improvement - the use of more

accurate forms for the G functions - and produce revised solutions, given in

Tables 14, 15 and 17.

2 NOTATION

The longitude-dependent part of the geopotential at an exterior point

(r, 6, X) can be written in normalized form
5 

as

S P (cos e) C m + 5 m sin m N

Z=2 m=1

where r is the distance from the Earth's centre, 0 is co-latitude, X is

longitude (positive to the east), p is the gravitational constant for the Earth

(398600 km 3/s ) and R is the Earth's equatorial radius (6378.1 km). The
P m(cos 6) are the associated Legendre functions of order m and degree 2 , and

Ckm and Sem are the normalized tesseral harmonic coefficients: only those of

order m = 15 and m = 30 are relevant here. The n6rmalizing factor N is

given by

N2 2(21 + 1)(k - m)! (2)
im (Z + m)!

-r
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Note that Z > m , so that, if m = 15 , then Z = 15,16,17,...

When a satellite passes slowly through 15th-order resonance as its orbit

contracts under the influence of air drag, it is possible to analyse the vari-

ations in some orbital parameters and to determine accurate values of 'lumped'_q,k _q,k

geopotential harmonics, denoted by C and S , which are linear functionsm m

of the individual coefficients Ckm and S m * By analysing both inclination

i and eccentricity e , good values can usually be obtaineu for three pairs of

lumped harmonics of 15th order, for (q,k) = (0,1), (1,0) and (-1,2) . The

first of these is derived by analysis of the changes in inclination, and the

linear equation for the lumped harmonic in terms of the individual coefficients

may be written

0,1 = 00,1E 0,1- 0. (3)

15 15,15 17 17,15 + Q19  019,15 + Q211C1 1,15 
+

and similarly for S . The Q01 coefficients here are functions of inclination,

eccentricity and semi major axis, but may be taken as constant for a particular
_0, 1

satellite passing through resonance. By evaluating C15 for satellites at many

different inclinations, the resulting equations of the form (3) can be solved to

determine the individual coefficients Ck,15 of odd degree (and similarly for

S).

The coefficients C of even degree are linked with the other two
.1,0 Z,15 _-1,2

lumped harmonics, 015 and C15 , via the equations

_1,0 1,0- 
1,0 -

15 16,15 + Q18 018,15 + Q2 20,15

(4)
-1,2 - +-1,2- +-1,2-

C15  = 16,15 + Q18 C18,15 + Q20  C20,15 +

and similarly for S . When these even-degree lumped harmonics, which are derived

chiefly from the changes in orbital eccentricity, are evaluated for satellites at

a variety of inclinations, the equations (4) can be solved for the individual

coefficients of even degree.

Analysis of 15th-order resonance may also yield valucs of lumped harmonics
_0,2 -0,2

of order 30, of which C30 and S30 are the best determined, being obtained

from the changes in orbital inclination. The appropriate linear equations for

these lumped harmonics are



_0,2 _ 0,2- 0 2-

C30 C3 0 ,30 + Q3 2 C3 2 ,30 + Q34 C34 ,30 
+  (5)

and similarly for S . Thus values of the individual coefficients of order 30

and even degree are obtainable if values of these lumped harmonics can be

determined for satellites over a wide enough range of inclination. For further

details of the theory, see Ref 4.

3 THE DATA

3.1 Introduction

We shall be using results from analysis of the orbits of 26 satellites

which have experienced 15th-order resonance. As two separate analyses are

included for one satellite (1964-52B), we have 27 equations of type (3) for the

odd-degree C coefficients of order 15 (and 27 for S ), obtained from analysis

of the inclination of each satellite. These analyses also yielded 11 equations

of type (5) for 30th-order C coefficients of even degree (and 11 for S ).

Analyses of eccentricity have been made for 20 of the 26 satellites (again_1 ,0

with two for 1964-52B), giving 21 equations for the lumped harmonic C10 and
_-1,2 5

21 for C15  , je a total of 42 equations of the type (4) for C coefficients

of 15th order and even degree (and 42 for S ).

All but two of the resonance analyses have been described previously. The

new ones are discussed in sections 3.2 and 3.3.

Table 1 gives the values of (C,S)15  used in the solutions, together with
6 - 1

the normalized inclination function F for £ = m = 15 , where 2p = £ - k
mp -

It is useful to multiply the values of the lumped harmonics by F15 ,15 ,7 before

plotting the results graphically, so as to avoid large changes in the values

between different inclinations. Values of FC and FS are therefore also

recorded in Table 1.
_ - 1,0 _ - -1,2

Table 2 gives the values of (C,S) 15  and (C,S) 15  with the appropriate

F . The 30th-order lumped harmonics are given later (Table 7).

3.2 Pegasus 1, 1965-09A

The variation of inclination for this satellite at resonance was success-
7

fully analysed some years ago , but no useful results could be obtained at that

time from the changes in eccentricity. In our previous determination of even-

degree harmonics of order 15, the chief weakness was the lack of any satellite

at inclination lower than 430 . Orbits at lower inclinations are much more strongly



+1+1 +1 +1 +1 +f +1 +1 1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1

bm

o 0 .9 O 1 91 *- 1 coo -h-0 O 91 9cf N-N .0O

+1 +1 +1 +1 + 1 +1 +1 1+1 +1 +1 +1 +1 +1 + 1+1 +1 +1 +1 +1 +1 +1 +1 +1 +1

0' -- ,T T , , ' .0. n -o ,ooo-.-.4 n ,O-

S oo o.... .

CD I1 1 1 1 I1 1 1 I I

1 -0 1 •T I- "

o . . . . .. . . . . . . .

o + + 1 +1 + 1 +1 + 1 + 1 +i +1 +I 1 +1 + 1 +i + 1 * 1 +1 + 1 +1 +i + 1 +i + + 1 +1 + 1 +i

* ~ ~ ~ ~ ~ ~ ~ ~ ~ 7 0, 0-.O -000I.fnI-n.00 0 n

o - ....... ... .. .... . .. . ... ...

+1 1+1 +1 + 1+1 +1 +1 + 1+1 +4I+ + + +I +*+ + 1+1 +1 + 11 +1 +

404 n. -o-O Noo N--0.0O N O .1o4....

-.A . .. . .wA . .

-- -- -- - --- -------.I1O -N N~ -O0 N N N-----
INI

o 111 11 11 111CD



7

* C N C
C N C N C C C N C

SC - C CNNNCN4
*4444444444444444444444

o .4 N C C C44NNNNNNNCNN
It. is

- - N N N
44 C 44.N~~N~4 C .0 . N N C .0 0

-4444444444444444444444
C4NNC4CNNN. C C C C -e4NN-NC

* 9 - - - - I - 1~4 - - r - - - NC I I r I I

- N C C - .. e4 - -, N . . 4 N 4 01 . NNNCNC . C -IC., . . . . 4 N . C

N 444444444444 4 -
* C C N 4 C NNCNN4NNCNNCN~N C

- C 4 C N N N 9 4 C 4 C C CNCNN4..It. C - - I I NNNNINNNNN.NN N
* I 4 4 111111

-~ 4, C 0 C44N~.4NN C N N N N N . C . N C

C - - e - - C C - -
44o CNNC--NN4CNNNCNNC~N N

o CNNNCNNN.0NN N-~I44IN~~ N N

a I 0C C C C NC- - - C C 9 CNNNNNNCNNCNNO.N
* N C N NNN.CCNNCNNNN4 N - N N N C -~4NNNNCC~~NNNNNNN44NC.NNN CCC

C C N C C C C 9 C 9 C C C C C 0 0 C C C C . -
* N N CEO

- ~NN.S4~~NCNN~NN CCC--- NNNNNN44NC..C

C N C C 444~.

.0 N

44 4 N 44 44
N C 0 4 4 4 C 4 0 . * C S.. S.. 44 N C N -

4 * N N C4 4444444 44444444 44 4444444444444444C4...
o N CNNNN.4 C N JNNNNCNCNCC..

C ~ C 9 . 4 - N . - . 4 N N N N- N - N N N N I C C N r I - - N I CC - N - 4 N I I N N

C N 9 49 44 4 4 C . N N 44 C C NN CNCNCNN . . C - N . N . C N - -
- N C -
ItO 4444444444 44444444444444 4444444444 449CN4 

N N N N C CNCCC4NN4CN
~NN.NNN . N .C .1 -CNN4ONOC N - N C N N I 4 N I - H I
N - - N N N I - N N I

I - I r

N C 44 C44.N..N4. N C 0 .044 N* - 4 C . N C N N C C . N - N N C N- N N C C N C CNN4NNNNCN...N
- 44444444414444 414444N4444444444

II) 44444444 44
9 C 4 - 9 C -
- 4N9.NN......... N N I 4

4 N C - N 4 4 H H 4 C

C N C * N CC C N 4
CNN4NCN C C . 4 N . . C - C C C CC NNN.~~NNNNNCCNCNN

44 044CC 44044 4444 444444 4444 44 4444 C
N COON C C C4NC-. C CNNCNN C NC CCN.CN . . N . . . NCNCN

044- 4 I C N 4 N C N - 14141- I I - I N N N N - - NN N 4 4

C C C4NN4 C C N C N CNNN C C - C CC N C N C C C C C N C C CCC- - N N C 44

44 - N C 44NCCCNNN CCNCNCCCN4 4NNNNNNCCCN NNCCCNNN

I/~

CC.44 44 44 - -
- 44 44 C 44 C 44 - 44 C 44CC - 0 C 41 4 44 4 C S- CNC4CNNC4 490 - N N N N N 4 N N* C CNNNNNN.....C...NNNN

C N NCNNCNN-..CNNNN C CCCCNNNNNCNCN C C



8

affected by harmonic coefficients of high degree, and are therefore powerful in

determining the values for high degree. The inclination of 1965-09A was 31. 0 ,

and an orbit determination was undertaken with the aim of analysing the vari-

ations in eccentricity at resonance. Orbits were determined 2 at 73 epochs from

4057 observations, chiefly US Navy, at the times when the effects of resonance

on eccentricity were expected to be greatest - between November 1973 and

September 1974 (37 orbits), and between April 1975 and January 1976 (36 orbits).

Good values of the four relevant lumped harmonics were determined and are given

in Table 2, with the standard deviations increased as specified in Ref 2, to

allow for the neglect of harmonics of degree greater than 36.

3.3 Cosmos 236, 1968-70A

This satellite, at an orbital inclination of 56.10, passed slowly through

15th-order resonance between July 1983 and October 1984, and the orbit has

recently3 been determined at 77 epochs by A.N. Winterbottom from 4744 obser-

vations, including 284 Hewitt camera observations. Well-defincd values were

determined for the six relevant lumped harmonics of 15th order and for two of

30th order; so this satellite contributes to all the solutions, for 15th and

30th order.

4 METHOD 01 SOLUTION FOR 15th ORDER

The method is a modified weighted-least-squares, with extra equations and

with rules for relaxing the standard deviations of ill-fitting values of the

lumped harmonics.

The main equations for 15th order are of the form (3) or (4), and the extra

equations are constraints of the form

- -5 .2
Ck,15 = 0 ± 10 /Z

2
, (6)

S5
and similarly for S . These extra equations express the expectation that

-5 2CZ,15 will be of order 10 /9 , as is confirmed in a general way by the Goddard

Earth Model IOC (Ref 8). As in our previous evaluation , we discarded all the

constraint equations for . < 23 , because these coefficients were so well

determined that the constraints seemed unhelpful: the equations embody the

instruction 'keep this coefficient as small as possible', an instruction which

is undesirable when (for example) we have determined that 109 15,15 = -20.4 ± 0.4,

so that its value is very unlikely to be numerically less than 18 or 19. The con-
s

straint equations were retained for Z. > 24 , with the proviso that, if the value
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for the coefficient of degree Z exceeded 10-5 /2 , the constraint was relaxed

until the weighted residual was 1.0. The occasions when this happened are indi-

cated in the tables giving the residuals.

The rules for the relaxation of standard deviations on ill-fitting values

of the lumped harmonics were the same as adopted previously. As usual, the

weighted residual is defined as the residual divided by the assumed standard

deviation. If the weighted residual exceeds a chosen value - and 1.4 proved to

be a convenient choice - the standard deviation is doubled. If the weighted

residual still exceeds 1.4, the standard deviation is doubled again. Occasion-

ally the weighted residual even then exceeds 1.4, and as a last resort the

standard deviation is increased to ten times its original value. Relaxation by

a factor of 10 is tantamount to rejection, but there is no harm in retaining the

values, because their weighted residuals are near the average (which is 0.8).

The relaxations necessary under these rules are indicated in Tables 1, 2 and 7.

Though successful in the past, this procedure is empirical, and there can

be no guarantee that the solution obtained will be stable or unique. Despite

the past successes, we did have problems here with the 15th-order harmonics of

odd degree, in that several somewhat different fittings were possible: we chose

the one that was least oscillatory.

5 SOLUTION FOR COEFFICIENTS OF ORDER 15 AND ODD DEGREE

As before, we have evaluated 11 coefficients, of degree 15,17,19,...35.

There are three reasons for this choice. First, the Q coefficients are large

up to degree 35 for some of the low-inclination satellites. Second, the measure

of fit E improves for up to 11 coefficients, but is not appreciably better for

12. Third, this choice facilitates comparisons with two comprehensive models of

the gravity field that go to degree 36, namely GEM lOB (Ref 8) and the European

GRIM3-LI (Ref 9).

The solution for the odd-degree coefficients of order 15 is given, with

standard deviations, in Table 3.

For the C coefficients in Table 3, comparison with our previous solution
1

shows only small changes, always less than I standard deviation. However, the
_0, 1

new value of C15 for 1968-70A, namely (-213.5 ± 5.4) x 10- , was somewhat in

conflict with the existing value for 1963-53B, namely (-233.4 ± 3.3) x 10- 9 at

nearly the same inclination. It was necessary to double the standard deviation

for both, as shown in Table 1, and consequently the standard deviations of the

values in Table 3 are slightly larger than before, on average 11% higher. The
0
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new value of e (where E
2  

is the sum of the squares of the weighted residuals

divided by the number of degrees of freedom) is 0.89, as against 0.79 previously.

(We suspected previously that the standard deviation for 1965-53B was too small,

but there was no justification for changing it, as it satisfied the procedure

for solution that we specified.) The new fitting is shown graphically in Fig 1,

where the lumped harmonics are multiplied by F 15 ,15 ,7

Table 3

Solution for odd-degree CZ,15 and SX,5

z 109 Z,15 109 Z,15

15 -20.5 ± 0.4 -6.7 ± 0.5

17 6.5 ± 0.6 3.4 ± 0.6

9 -16.5 ± 0.7 -14.4 ± 0.7

21 18.5 ± 0.5 12.3 ± 1.1

23 21.4 ± 1.1 -1.6 ± 1.5

25 -5.3 ± 1.8 2.6 ± 2.3

27 -3.7 ± 1.4 9.7 ± 2.0

29 -7.9 ± 1.3 -5.7 ± 1.5

31 16.6 ± 2.5 -2.7 ± 3.4

33 -1.8 ± 2.8 -10.0 ± 3.5

35 -8.2 ± 3.7 1.1 ± 4.6

For the S coefficients in Table 3, the solution was not straightforward,

because it was possible to arrive at different fittings depending on the order in

which the relaxations were made. After many trials, we chose the solution which

was least oscillatory: it is shown in Fig I and is smoother than the fitting in

Ref 1. The uncomfortable feature of Ref I was a relaxation by a factor of 10 for

1965-53B. This 'rejection' is not now acceptable, because the value is given

some support by the new result from 1968-70A: the new solution uses both satel-

lites, but with standard deviation quadrupled. The only other change was a

further doubling of the standard deviation on 1979-82A, for which the original
7

fitting was unsatisfactory. The alternative solutions involved keeping smaller

standard deviations for 1965-53B and 1968-70A at the expense of inducing

oscillations elsewhere and requiring relaxation of other apparently accurate

values (eg 1963-24B). C

Lfl
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The new S solution of Table 3 has larger standard deviations than the

old, on average 10% larger, and the value of e is 0.90, as compared with 0.82

previously. The new values of the S coefficients differ from the previous set

by 0.8 sd on average (using the new standard deviation as the measure). The

largest change is 1.4 sd for $31,15 , and the largest change among the early

coefficients is for S21,15 which goes from (10.8 ± 0.9) x 10 to

(12.3 ± 1.1) 10
-
.

Table 4

Weighted residuals in the equations for odd-degree harmonics

Satellite equations Constraint equations

Satellite 01 0S1 C S1
C ~ SX,5 Z1
I 15

65-09A -0.08 j 0.18 25 0.33 -0.16
69-68B 0.34 -0.03 27 0.27 -0.71
64-84A -0.39 -0.21 29 0.66 0.48
79-82A 0.15 0.97 31 -1.OOR 0.26
71-30B -0.75 -0.19 33 0.19 1.OOR
74-34A 0.47 -0.05 35 1.00 -0.14
71-58B 0.84 0.86 -

62-15A -1.37 0.43
65-53B -0.79 -1.02
68-70A 1.10 -1:40
63-24B 0.88 0.70
70-87A -1.12 -1.20

65-14A 0.77 -0.71

77-12B 0.88 0.27
71-106A -0.90 0.64
71-IOB -0.59 0.95
71-18B -0.99 0.91
70-111A -0.53 0.06

71-13B 0.72 -0.71
77-95B 0.98 0.97
67-42A 0.07 -0.55
70-19A 0.15 1.19
67-73A 0.11 0.10
71-54A -0.04 0.01
64-52B(H) -0.15 1.14
64-52B(B) -0.70 1.01
66-63A -1.18 1 -0.81

The weighted residuals for each lumped harmonic in the solution, and for

the constrairt equations, are given in Table 4. The symbol 'R' indicates that

the constraint 10-5 /2 was relaxed to give a weighted residual of 1.0. In

accordance with the rules specified in section 4, the standard deviations were
'I.,

0i
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relaxed to ensure that none of the weighted residuals exceeded 1.4 (or 1.0 for

the constraint equations). For 1964-52B the symbols (H) and (B) refer to the

Hilr10 11,12two analysts, Hiller and Boulton

Fig 1 shows the fittings graphically, with the curves given by GEM 10B

(Ref 8) for comparison.

Further comments on the solutions will be found in section 7.

6 SOLUTION FOR COEFFICIENTS OF ORDER 15 AND EVEN DEGREE

As with the coefficients of odd degree, and for the same reasons, we have

evaluated 11 coefficients of even degree 16,18,20,...36 . As mentioned in

section 3, there are 42 equations of type (4) and there are also seven constraint

equations of type (6). Thus we have 49 equations for the C coefficients, and

49 for the S coefficients. The solution is given in Table 5.

Table 5

Solution for even-degree CZ, 15 and SZ,15

E 10 9C, 15  to9S,15

16 -13.2 ± 1.2 -26.5 ± 0.8

18 -41.5 ± 1.3 -17.2 ± 0.9

20 -23.3 ± 1.1 -1.9 ± 0.9

22 23.3 ± 1.4 6.7 ± 1.2

24 -1.3 ± 1.6 -23.5 ± 1.4

26 -14.7 ± 1.7 5.2 ± 1.5

28 -10.7 ± 1.6 1.0 ± 1.4

30 -8.5 ± 2.5 -14.9 ± 1.7

32 19.7 ± 4.1 2.5 ± 2.6

34 -2.4 ± 4.1 14.0 ± 3.2

36 10.7 ± 4.5 -9.2 ± 2.9

A preliminary new solution for even-degree coefficients was derived in

Ref 2 by adding the results from 1965-09A. The further addition of the four

lumped harmonics from 1968-70A considerably modifies this preliminary solution,

so we shall ignore it and refer back to the 'previous solution' of Ref 1, as for

the odd-degree coefficients.
0

Table 5 shows that, for the higher-degree harmonics, the new solution has

much smaller standard Aeviations than the previous solution, due largely to the
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new results from 1965-09A at low inclination (31.8°). For the coefficients of

degree 24-30, the standard deviations have been reduced by a factor of 3.1 on

average; for degree 32-36 the improvement is by a factor of 1.4. Consequently,

if we loosely define 'well-determined' values as those with standard deviation

<1.7 x 10- 9 (equivalent to an error less than about I cm in geoid height), the

well-determined values now extend up to degree 28, instead of up to degree 20 as

before. This is a considerable advance on our previous evaluation.

The new fittings are shown graphically in Figs 2 and 3, and the weighted

residuals for the 84 lumped harmonics are given in Table 6. The value of e is

0.92 for C , and 0.83 for S .

Table 6

Weighted residuals in the equations for even-degree harmonics

Satellite equations Constraint equations

Satellite 1,0 -1,2 1,0 -1,2 -

Cae li e 15  C 15  15 15 ,15 ,15

65-09A 0.76 -0.08 0.19 -0.17 24 0.07 1.OOR
79-82A -0.15 i -0.40 -0.19 1.02 26 1.00 -0.35
71-30B 0.33 -1.27 -0.63 0.90 28 0.84 -0.08
74-34A 0.55 j -1.31 -0.29 0.24 30 0.76 1.OOR
71-58B -1.11 -0.75 0.92 -0.54 32 -1.OOR -0.25
62-15A 0.47 1.20 0.89 -0.00 34 0.27 -1.OOR
65-53B 0.72 1.05 0.14 0.15 36 -1.OOR 1.OOR
68-70A 1.31 -1.01 -0.88 0. 82 - ___

63-24B -1.30 1.00 -0.09 1.07
65-14A -0.02 0.35 -0.32 -0.19
71-106A -0.49 -1.18 -0.61 0.43
71-1OB -1.09 0.10 -0.10 1.02
70-IIA 0.21 -0.21 -0.77 -1.31
71-13B -0.56 0.40 0.01 0.27
77-95B 0.78 -0.09 0.99 -0.12
67-42A -0.88 -1.26 -0.05 -1.02
70-19A 0.74 -0.34 1.31 -0.89
67-73A -0.31 -0.83 1.22 -0.70
71-54A -0.35 0.52 -0.88 0.22
64-52B(H) -1.12 1.35 0.60 -1.01
64-52B(B) -0.79 -0.72 -1.30 -0.36

In the solution for the C coefficients, it was necessary to relax the
_-1,2

accuracy of C15  for the new satellite, 1968-70A. Erring on the side of

caution, we decided to keep the doubled standard deviation for E15 from

1965-09A recommended in Ref 2: a solution with this value unrelaxed is possible,

but leads to large values for the coefficients of degree 32 and 36.
0
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In the solution for the S coefficients it was obvious that the new value
_--,2

of S15 from 1968-70A would not fit, and in the end it has to be relaxed by a

factor of 10. (This is believed
3 

to result from difficulties in fitting the

resonant variation in eccentricity for orbits of exceptionally low eccentricity,
_1,0

e < 0.001.) Unfortunately, the residual for S15 from 1968-70A remained just

above the specified limit of 1.4 and so, under our rules, this value had to be

relaxed by a factor of 2. No other changes were needed.

The new solution in Table 5, as viell as having much lower standard devi-

ations than before for the high-degree coefficients, shows some significant

changes in the numerical values of the coefficients. For degree lb-22, the

values are altered on average by only 0.4 sd, and none changes by more than

0.8 sd (where the standard deviation is that of the previous solution). The
-9

largest change is for C 22,5 which goes from (24.9 ± 1.9) 10
- 

to

(23.3 ± 1.4) x 10- 9 . For degree 24-36, the average chanrae is 1.3 sd and the

greatest is 2.1 sd: the larger changes are concentrated at the highest degrees,

where the values were, and still are, poorly defined. The change of 2.1 sd
-9 -9

occurs with C 34,5 which goes from (7.9 ± 4.9) , 10 to (-2.4 ± :.1) K 10

Fig 2 shows good agreement for C between the curves fitted to our values

and the curves from GEM 10B. In Fig 3 the GEM 1OB curves for S agree well with

ours except at low inclinations, where the cur\,, for GEM 1OB is >are to be close

to zero because all the high-degree S coetficient,; in GEM )OR are small;
,15 _1,0

our curve, however, has to fit the rather large negativo value of S15 near

i = 440 and exhibits quite a deep minimum there. Az we showed in Fig 4 of Ref 1,

__-1,2
the curve for FS , when moved to the right by 6

° 
in inclination, almost

15 , -1,2

coincides with that of FS15 So there is a minimum in the curve for FS15

near inclination 390 - a minimum which is apparently unca led for as there are

no values to provoke it: it can be regarded as a 'reflection' of the dip in~1,0
FS at inclinations near 440.

_1,O

It is a pity that there is no independent check on the value of S 15 at
440

, 
which obviously influences the course of the curve. Its weighted residual

is small, -0.19, but we tried the effect of relaxing this standard deviation by

a factor of 10. The value of c inevitably decreases, but the decrease is

surprisingly small, from 0.83 to 0.82, and there is still a deep minimum in
91,0

FS15 near i 
= 

44 , although of course it is less pronounced than before, the

drop between 52 and 440 being 20% less. We concluded that we had no justifi-

cation for relaxing the standard deviation of the value at 440.
a-
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7 DISCUSSION OF THE 15TH-ORDER SOLUTIONS

Our aim in these evaluations has been to derive reliable and accurate values

of 15th-order coefficients, firstly for their own sake, so as to establish their

values, and secondly so as to provide a test of comprehensive gravity
8,9,13,14models '

9
' , the accuracy of which is extremely difficult to assess because

of the complexity of the solutions.

It should be said first that when testing comprehensive gravity models it

is best to work with the values of the lumped harmonics, which constitute the
bee adpte b 15,16 17

primary data: this procedure has been adopted by Klokocnik and Wagner

who have made the most illuminating analyses.

However, the individual coefficients should in principle be capable of

evaluation if lumped values are available over a wide enough range of incli-

nations. Why then do we need to relax a number of the standard deviations to

achieve good fittings?

The first answer to this question is that several of our 26 satellites were

either of rather high drag or had rather poorly-determined orbits, and we had no

hesitation in relaxing the accuracy of the values for these satellites when

necessary. Over-accurate fitting of the orbital variations, giving lumped

harmonics with over-optimistic standard deviations, will inevitably occur by

chance in a proportion of analyses where the data is poor. The alternative to

relaxation would have been to remove the offending satellite altogether: but

this is virtually the same as the relaxation by a factor of 10 which was applied

when necessary, and, as it happened that such relaxations were never needed for

both the C and S coefficients, the complete removal of any satellite would

have removed some useful data. A good example is 1971-18B at inclination near

700 in Fig 1: the C value is relaxed by a factor of 4 and is almost useless;

but the S value in Fig 1 fills a gap in inclination and, when it was relaxed

as a trial, the fit was not altered, so that the value is prima facie reliable.

The second answer to the question is paradoxically the exact opposite of

the first: some of the lumped harmonics may be too accurate for a fitting with

only 11 cuefficients. Imagine that we had highly-accurate lumped harmonics at

10 intervals in inclination. This would define the true variation with i

which would probably turn out to be very irregular. Any attempt to fit the

variation with a set of 11 coefficients would be doomed to failure, and great

relaxations of many of the very small standard deviations would be essential to

achieve a credible fitting. More than 11 coefficients could of course be used
-t
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in this imaginary scenario, but here we do not have that option (a) because we do

not have enough orbits, and (b) because coefficients of very high degree (>36)

have appreciable effects only on orbits at inclinations less than 300, of which

we have none. Using too many coefficients in our fitting would reduce the

reliability of the solution by introducing spurious oscillations.

To summarize these answers, we should expect to have to make relaxations

for orbits with high drag or poor data, where over-accurate fittings have arisen

by chance, and also for a few of the most accurate values which may not all be

amenable to a fitting with only 11 coefficients.

8 SOLUTION FOR COEFFICIENTS OF ORDER 30 AND EVEN DEGREE

8.1 Introduction

In our previous evaluation we had results from 9 satellites. With the

addition of 1968-70A we now have 10 satellites, and, as the orbital inclination

of 1968-70A is in a region where coverage was previously weak, the solution is

considerably strengthened.

In our previous evaluation we commented that the solution for the C

coefficients was very good, but that the solution for the S coefficients was

not satisfactory, with conflicting values of lumped harmonics at inclinations

near 600. The source of this conflict has now been identified as an error in

sign in the value taken for the lumped harmonic S for 1963-24B at 58
°

30
inclination.

8.2 The lumped harmonics and the equations to be solved

Table 7 gives the 11 values of the lumped harmonics on which the new solu-

tion is based. To these 11 equations of the form (5) we add, as usual, constraint

equations of the form

E30 = 0 ± 0-5/2 (7)

(and similarly for the S coefficients), so that we have 11 + N equations to

solve for N coefficients. As before, we relax (by a factor of 2 or 4 as

necessary) the standard deviations of lumped harmonics for which the weighted

residual in the solution exceeds 1.4, and we also make oie relaxation of the

10-5 /Z2 to ensure that the weighted residual does not exceed 1.0.

0

U'
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When the C and S equations are solved for N coefficients, the values

of e are as follows, for 3 N _ 6

N 3 4 5 6

c for C equations 1.47 1.06 0.99 0.88

c for S equations 1.15 1.11 0.96 0.89

The 6-coefficient solutions are chosen, because c decreases substantially

between N = 5 and N = 6 , and because the Q coefficients are quite large

up to 2 - 40 for 1974-34A and 1968-70A.

8.3 The 6-coefficient solution

The values obtained in the 6-coefficient solution are listed in Table 8,

with their standard deviations.

Table 8

Solution for even-degree CZ, 30  and S1,30

t 10 9EZ,30 109i,,30

.2.

30 -3.2 ± 0.9 7.4 ± 1.0
32 -8.6 ± 1.8 4.7 ± 1.7
34 -13.3 ± 2.2 -5.6 ± 2.4
36 -3.7 ± 3.1 5.5 ± 4.0
38 6.8 ± 3.2 3.8 ± 4.0
40 4.6 ± 2.6 -4.0 ± 3.1

The residuals for each of the lumped harmonics and the constraint equations

are given in Table 9.
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Table 9

Weighted residuals in the equations for 30th-order harmonics

Satellite equations Constraint equations

Satellite 0,2 0,2 - -

E 30 S30 1 Z,30 Z,30

74-34A 0.24 0.47 30 0.29 -0.67
68-70A -0.63 -1.28 32 0.88 -0.48
63-24B 0.87 0.31 34 1.00R 0.64
65-14A 0.07 -0.33 36 0.48 -0.72
71-IOB -0.75 0.97 38 -0.99 -0.55
70-111A -0.53 -0.30 40 -0.74 0.65
71-13B 0.99 0.18
67-42A -1.00 -1.13
71-54A 0.04 0.10
64-52B(H) 0.23 0.81 
64-528(B) 0.84 1.19 II

Fig 4 shows the fitting of the lumped hz:monics, multiplied by the appro-

priate F factor, with the values from GEM 10B plotted as broken lines.

8.4 Discussion of the solution

The values for the C coefficients are close to those in the previous

solution, and the curve (Fig 4) fits the lumped harmonics very well, The largest

change in the value of an individual coefficient is for C4 0 .1 5 , which changes

from (6.0 ± 2.8) to (4.6 ± 2.6) x 10- 9 . On average the standard deviations

decrease by 5%.

We commented that the previous S solution was unsatisfactory, firstly

because the fitting was poor at inclinations between 550 and 700, and secondly

because it was necessary to relax the accuracy of the lumped harmonic from

1965-14A, although this satellite was thought to be more reliable than its

'competitor' 1971-lOB. This conflict has been resolved by the reversal in the

sign of the lumped harmonic for 1963-24B: we much regret this error, which arose

from an unnoticed misprint in the original paper. The new fit for the S

coefficients is shown by a full line in Fig 4: the curve differs greatly from

the previous one at inclinations less than 700, but is scarcely changed for

inclinations greater than 700. In the new fitting, it is satisfactory that the

lumped harmonic from 1965-14A has its standard deviation restored to the original

value (see Table 7); the standard deviation for 1971-IOB has to be doubled, but

this satellite was expected to be less reliable. The fitting for S , though

0
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improved, is still not completely satisfactory because the new value from

1968-70A requires a doubled standard deviation and even then does not fit well.

Consequently, the standard deviations of the S values for degree 36,38 and 40

in Table 8 are appreciably worse than those for the C values: indeed, as

these three S values are also quite small, they cannot be regarded as determi-

nate. In the previous solution they were also small and indeterminate, so the

changes in these values are of no consequence in themselves; but they do imply

changes in the earlier coefficients which are significant. In particular,

10 S is now 4.7 ± 1.7 instead of 0.6 ± 2.3 and 10 S is now -5.6 ± 2.4

instead of 5.4 ± 2.9. The value of S30,30 is not significantly changed.

8.5 Coefficients of 30th order and odd degree

In theory it is possible to derive lumped harmonics of order 30 and odd

degree from analysis of the eccentricity. In practice satellites of very low

drag are needed to ensure that unmodelled atmospheric perturbations do not spoil

the fitting. So far only three satellites have yielded values of these coef-

ficients - 1971-54A, 1965-14A and 1968-70A - and this is not enough to allow

evaluation of individual coefficients.

9 COMPARISONS WITH VALUES IN COMPREHENSIVE GEOPOTENTIAL MODELS

9.1 Coefficients of 15th order

Several comprehensive geopotential models, such as Rapp's 1981 model 13 and

GRIM3-LI (Ref 9), have utilized our previous values of 15th-order coefficients; so

comparisons are not helpful. However, it is believed that GEM lOB and the recent

GEM-TI are independent of our values; so their accuracy can be tested if our
14

values are the more accurate. The nominal accuracy of GEM-Ti is given as

between 3 and 5 x 10-9 for most of the relevant coefficients, whereas our standard

deviations do not exceed 1.5 x 10- 9 up to degree 23; so a comparison seems worth

making and is shown in Table 10. For degree 15-23, the mean difference between

our 18 values and the corresponding values in the GEMs is 3.1 x 10- 9 for GEM lOB

and 2.4 x 10-9 for GEM-T1. This strongly suggests that the standard deviations

given for these coefficients in GEM-Ti (on average 3.1 x 10-9 ) are realistic. It

should be noted, however, that the agreement is not so good for higher degrees:

going up to degree 24, rather than degree 23, gives mean differences of

3.9 x 10- 9 for GEM 1OB and 3.2 x 10- 9 for GEM-Ti.

0
41
%.
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Table 10

Comparison of our 15th-order values with
GEM 10B and GEM-Ti up to degree 24

10 9C ,15 10 9S, 15

GEM 1OB GEM-Ti Our values GEM 1OB GEM-Ti Our values

15 -19.7 -18.1 ± 3 -20.5 ± 0.4 -6.4 -8.1 ± 3 -6.7 ± 0.5
16 -14.4 -12.5 ± 4 -13.2 ± 1.2 -27.8 -32.3 ± 4 -26.5 ± 0.8
17 2.5 4.9±1 6.5±0.6 4.8 5.7±1 3.4±0.6
18 -48.3 -37.8 ± 4 -41.5 ± 1.3 -18.6 -19.8 ± 4 -17.2 ± 0.9
19 -20.6 -18.3 ± 3 -16.5 ± 0.7 -15.3 -12.8 ± 3 -14.4 ± 0.7
20 -23.9 -22.7 ± 3 -23.3 ± 1.1 4.8 -0.4 ± 3 -1.9 ± 0.9
21 16.2 16.6 ± 3 18.5 ± 0.5 9.5 15.0 ± 3 12.3 ± 1.1
22 24.1 27.9 ± 3 23.3 ± 1.4 -1.3 3.1 ± 3 6.7 ± 1.2
23 15.4 17.7 ± 4 21.4 ± 1.1 4.1 -2.3 ± 4 -1.6 ± 1.5
24 3.1 9.8 ± 4 -1.3 ± 1.6 -5.1 -13.5 ± 4 -23.5 ± 1.4

18
For the recent WGS 84 model . values of the coefficients are available

only up to degree 18, and it is possible that the model utilizes our earlier

values; so comparisons are of dubious worth. The eight values of coefficients

of degree 15-18 in WGS 84 differ from the corresponding values in our solutions

by 2.5 x 10- 9 on average.

9.2 Coefficients of 30th order and even degree

For 30th order, the models GEM lOB, GEM-TI and GRIM3-LI apparently do not

make use of our previous values, and Rapp (1981) uses only the values for Z = 30;

so it seems legitimate to make comparisons, which are shown in Table 11 for coef-

ficients up to degree 36. The respective authors estimate the average standard

deviation of GEM-TI, GRIM3-LI and Rapp (1981) as 5, 3 and 2.5 x 10-9 respectively,

while our standard deviations range between 0.9 and 4.0 x 10- 9 .

Our standard deviations are too large to allow any firm conclusions: but the

mean differences between our values and the corresponding values in GEM lOB,

GEM-TI, GRIM and Rapp are 4.2, 6.5, 3.9 and 4.0 x 10-9 respectively (excluding

£ = 30 for Rapp). These differences would be consistent with accuracies of about

5 x 10- 9 in GEM-Ti and about 3 x 10- 9 in the other models, ie in line with the

authors' estimates given in the previous paragraph*.

* The greatest difference is for C32 ,3 0 with GEM-Ti, which is a satellite-only

model. A more recent model (PGS 3325), with surface gravity and altimeter data
added, gives 109C32 30 ' -5.0 ± 1.5 (J.G. Marsh, Private Communication). This
is much closer to ouf value.

0
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Table 11

Comparison of our 30th-order values with
comprehensive models, for . < 36

109EL,30 109SZ,30

GE E-GRIM3- GEM GEM-IGRIM3-1
lOB L Rapp Our values 10B TI Li Rapp Our values

30 -5.2 -1.5 -0.6 (-3.3) -3.2 ± 0.9 11.1 -0.4 7.1 j(7.5) 7.4 ± 1.0
32 -0.6 8.3 -6.9 -6.7 -8.6 ± 1.8 -0.2 1.7 -1.0 0.5 4.7 ± 1.7
34 -11.9 -6.1 -23.0 -22.9 -13.3 ± 2.2 1.2 0.0 0.7 -0.6 -5.6 i 2.4
36 -3.9 -1.6 -7.6 -6.0 -3.7 ± 3.1 -0.91-2.0 6.4 4.8 5.5 ± 4.0

There may be merit in comparing the mean of the four with the corresponding

values in our solution: the average difference is 3.3 x 10 9 , which is better than

for any individual model. Though it is impossible to allot a nominal standard

deviation to the mean of the models, a value near 3 x 10- 9 would be plausible,

while the mean standard deviation of our values is 2.1 x 10-9; so the observed

mean difference of 3.3 x 10- 9 is very satisfactory.

10 REVISED SOLUTIONS AFTER MORE ACCURATE COMPUTATION OF G-FUNCTIONS

10.1 Correction of the lumped harmonics

In all our previous evaluations of the individual harmonic coefficients, we

have worked with the computer programs THROE, SIMRES and PROF, in which the

values of the eccentricity function Gpq (defined in Ref 4) are obtained from2.pq 2
an approximation Gpq that ignores terms of order e relative to the main

term. Most of the orbits analysed have e ( 0.011 , and the error in using Gpq

instead of Gpq is very small; but there are some orbits with e > 0.02 for

which the approximation is significantly in error. Recently, A.W. Odell has

written the program GQUAD (described in Ref 4), in which G is evaluated

accurately by numerical integration. We now take the opportunity of replacing

C by G whenever necessary and recalculating the values of the coefficients

derived in section 5 to 8.

The theory for G is given in Ref 4, and it is not appropriate to go into

detail here. Briefly, the fitting of the changes in inclination at resonance
_ 0,1

with THROE leads to a numerical value of G15 7 0 C15  Previously we have
10,1

calculated a (slightly incorrect) lumped harmonic value, C15  say, by taking
=0,1

this numerical value equal to G C The correct value for the lumped
15,7,0 15

harmonic is obviously given by:
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0,1l q:o 1 ( IG (8)
C 15 C 1 G15,7,015,7,0)C15 = 15

Thus the previously derived values of C and their standard deviations must
I;all be multiplied by GI1,7,0/G 1,7,0. A similar procedure applies for the

other lumped harmonics, with appropriate changes of suffix. For example,

-- 1,2 . -1,,

15 C 15 G16,7,-116,7,-1 (9)

The corrected values of the lumped harmonics, to replace those in Tables 1

and 2, are given in Tables 12 and 13. The correction factor, f say, is always

less than 1. In Table 12 there are 18 orbits with e < 0.011 , and for these

f > 0.99 ; for the orbits that are most accurate, e < 0.005 and f > 0.999

so that the changes are negligible. For the orbits of higher eccentricity the

corrections are larger but still not significant by comparison with the standard

deviation: the largest is for 1971-106A, but is still less than 10% of the sd.

For the values in Table 13 the correction factor for (q,k) = (1,0) is

the same as for (q,k) = (-1,2) . Again the largest change is for 1971-106A,

but is less than 0.2 sd.

10.2 Correction of the Q coefficients

It is not only the lumped harmonics that are affected by the use of

instead of G : each Q coefficient also needs to be adjusted, because each Q

is the ratio of two G functions: see Ref 4 for details. Specifically Qq,k is

proportional to Gpq/GZoPoq , where and po are the lowest values of Z

and p that appear. We have previously taken the ratio of these G functions

as Gpq/G.opoq . Thus we need to multiply each Q by a factor

G ^2 0~ G
Gpq GoPoq  f Zpq (10)

a pq " G oPoq  G pq

where f is the correction factor applied to the lumped harmonic, as before.

It turns cut that > 1 and that its value increases with k and with e ; so

its efrect is greatest for low inclination and high eccentricity. Among the

satellites in Table 1, 1964-84A is by far the most strongly affected, as i = 380

and e = 0.042 . For this satellite the Q factor for the largest term in the

lumped harmonic, namely Q 0 , C is increased by 15% and so some decrease in
23 23,15
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the (rather large) value of C23 ,15 is to be expected. We have corrected the
Q factors for all the orbits with e > 0.011, and the new values are listed in

Tables 18 to 21 (pages 29 and 30). The values of Q for the other satellites

are given in Ref 19.

Table 12

Values of lumped harmonics (cs) I for the 26 satellites

with G 15,7,0 corrected

1 -- Semi-
Stltemajor ( 90, 90,I\ Correction

No. Satelli axs 10 C1 110 $15I factor

(deg) (km) forr corr

I 65-09A 31.76 6857 0.007 30890 ± 1950 13500 ± 960 0.997
2 69-68B 32.97 6857 0.004 20320 ± 750 6270 ± 910 0.999
3 64-84A 37.80 6860 0.042 510 ± 520 -1810 ± 1310 0.903
4 79-82A 43.60 6862 0.001 -467 ± 34 -767 ± 424' 1.000
5 71-30B 46.36 6869 0.011 -395 ± 50 -791 ± 30 0.993
6 74-34A 50.64 6872 0.002 -430.2 ± 10.0 -320.9 ± 8.3 1.000
7 71-58B 51.05 6874 0.011 -352 ± 93* -246 ± 45 0.993
8 62-15A 53.82 6876 0.022 -360 ± 14 -111 ± 30 0.972
9 65-53B 56.04 6879 0.003 -233.4 ± 6.6* -103 ± 34- 1.000

10 68-70A 56.08 6880 0.002 -213.5 + 10. 8" -91.1 ± 16.8- 1.000
11 63-24B 58.20 6883 0.002 -110.6 ± 5.6 -41.6 ± 4.5 1.000
12 70-87A 62.92 6888 0,007 -5.4 ± 3.6 -31.3 ± 11.2

"  
0.997

13 65-14A 65.02 6892 0.003 4.8 ± 2.1 7.1 ± 2.5 1.000
14 77-12B 65.49 6894 0.029 12.8 ± 11.8* 0.7 ± 12.7 0.952

15 71-106A 65.70 6895 0.045 -3.2 ± 37- I 8 ± 15 0.890
16 71-lOB 65.83 6893 0.002 -0.7 ± 4.1 2.4 ± 3.9 1.000

17 71-18B 69.84 6900 0.040 -34 ± 22- 9 ± 5 0.911
18 70-111A 74.00 6905 0.001 -26.0 ± 1.0 -5.2 ± 1.3 1.000
19 71-13B 74.05 6905 0.002 -24.6 ± 1.3 -6.1 ± 1.0 1.000
20 77-95B 75.82 6908 0.029 -21.4 ± 4.9 -2.9 ± 5.1 0.952
21 67-42A 80.17 6918 0.007 -23.0 ± 1.6 -8.6 ± 1.3 0.997
22 70-19A 81.16 6916 0.005 -21.0 ± 1.6 -1.1 ± 5.21 0.999
23 67-73A 85.98 6925 0.025 -13.4 ± 2.2 -6.2 ± 3.2 0.964
24 71-54A 90.21 6930 0.002 -16.05 ± 0.21 -6.90 ± 0.21 1.000
25 64-52B(H) 98.68 6945 0.023 -27.4 ± 1.9 1.5 ± 7.8' 0.969
26 64-52B(B) 98.68 6945 0.023 -30.2 ± 4.5* -4.3 ± 3.1 0.969
27 66-63A 144.16 7009 0.003 36900 ± 9700 12200 ± 9400* 1.000

Key: * Standard deviation - 2
± Standard deviation x 4

C
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Table 13

Values of lumped harmonics C and CS 15

after correction of G

19,2)  9Correc-
9E 09E 1 109 1 15tion

Satellite 0 C) 0$15 factor1 orr corr corr corr

65-09A 52900 ± 1820( -340 ± 510 -5000 ± 9700 200 ± 790 0.998
79-82A -860 ± 150 -234 ± 34 -1930 ± 160 185 ± 268- 1.000
71-30B -418 ± 93 -200 ± 60* -1020 ± 670V 204 ± 80t 0.995
74-34A -211.2 ± 24.9 -3.0 ± 8.6 128.4 ± 20.2 63.5 ± 3.4 1.000
71-58B -464 ± 231± -50 ± 92± 252 ± 119* 45 ± 14 0.995

62-15A -75 ± 18 148 ± 59- 169 ± 75* 11 ± 33 0.982
65-53B 18 ± 17 106.9 ± 8.7 57 ± 23 2.4 ± 8.1 1.000
68-70A 20.4 ± 10.2 74.4 ± 23.2± 39.3 ± 15.2* 38 ± 44V 1.000
63-24B 59.3 ± 10.2 101.5 ± 13.0* 26.8 ± 7.4 12.9 ± 16.4+ 1.000
65-14A 74.8 ± 5.8 !-12.4 ± 3.7 -9.6 ± 4.4 -29.4 ± 3.0 1.000
71-106A 47 ± 22 -62 ± 37i -51 ± 65V -18 ± 22 0.927
71-IOB 35.1 ± 23.4* -20.0 ± 10.7 -13.8 ± 11.0 -18.9 ± 10.3 1.000
70-111A -18.0 ± 3.3 -46.5 ± 2.7 -44 ± 257 -40.5 ± 4.0 1.000
71-13B -19.8 ± 1.8 -45.5 ± 2.0 -24.8 ± 0.7 -35.2 ± 1.0 1.000
77-95B -3 ± 25* -61 ± 15 -4 ± 21* -45 ± 17 0.969
67-42A -54.6 ± 6.4* -131 ± 21* -37.1 ± 2.6 -97 ± 18* 0.998
70-19A -26 ± 417 -128 ± 29 -15 ± 20± -130 ± 37 0.999
67-73A -85 ± 37 -119 ± 64 82 ± 117* -171 ± 168* 0.977
71-54A -92 ± 48 -62.9 ± 2.6 -170 ± 112* -53.4 ± 1.6 1.000
64-52B(H) -86 ± 27± -3 ± 10* -36 ± 8 -33 ± 11 0.980
64-52B(B) -77 ± 27± -41 ± 34V -68 ± 21± -25.6 + 8.7 0.980

-- I - dei ation x

Key: * Standard deviation x 2
V Standard deviation x 4
7 Standard deviation × 10

10.3 Revised solutions for 15th order

With these corrected Q factors and the revised values of all the lumped

harmonics given in Tables 12 and 13, we have derived revised solutions, taking

the same relaxations in the standard deviations as before. The new solutions

for odd degree are given in Table 14: the values of E are 0.84 for C and

0.90 for S . Comparison with Table 3 shows that the most significant change,
9-by 0.7 sd, is for 10 C23 ,15 , which decreases from 21.4 ± 1.1 to 20.6 ± 1.0.

There is also a change of about 0.8 sd in the poorly-determined C35,15 The

average change is 0.23 sd. The standard deviations in Table 14 are on average

10% lower than in Table 3, none being higher: this can be read either as luck

or as an indicatiun that the corrections have led to better values for the

coefficients.
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The revised solutions for even degree are given in Table 15; the values of

E are 0.92 for C and 0.82 for S . The values of the coefficients and their

standard deviations differ only trivially from those in Table 5, the largest

-9 -
change being 0.2 x 10 for S36,15 . The average change is 0.03 sd.

The changes are too small to produce significant changes in Figs I to 3,

and the weighted residuals are similar to those in Tables 4 and 6.

Table 14

Revised solutions for odd-degree Ck,15 and S£,15

z 109 Z, 15 10 9 ,15

15 -20.4 ± 0.4 -6.7 ± 0.4
17 6.6 ± 0.5 3.4 ± 0.6
19 -16.4 ± 0.6 -14.2 ± 0.7
21 18.3 ± 0.5 12.0 ± 1.0
23 20.6 ± 1.0 -1.4 ± 1.4

25 -5.8 ± 1.6 1.9 ± 2.0
27 -3.9 ± 1.3 9.7 ± 1.8
29 -8.3 ± 1.2 -5.4 ± 1.4

31 17.1 ± 2.2 -2.7 ± 3.0
33 -1.5 ± 2.4 -9.4 ± 3.0
35 -5.3 ± 3.4 2.4 ± 4.3

Table 15

Revised solutions for even-degree CZ,15 and S X15

x 10 9 Z,15 109gS ,15

16 -13.2 ± 1.2 -26.5 ± 0.8
18 -41.4 ± 1.3 -17.2 ± 0.9
20 -23.2 ± 1.1 -1.9 ± 0.9
22 23.2 ± 1.4 6.7 ± 1.2
24 -1.4 ± 1.6 -23.5 ± 1.4
26 -14.7 ± 1.7 5.2 ± 1.5
28 -10.6 ± 1.6 1.1 ± 1.4
30 -8.4 ± 2.5 -14.9 ± 1,7
32 19.6 ± 4.1 2.4 ± 2.6
34 -2.3 ± 4.1 13.9 ± 3.2
36 10.7 ± 4.5 -9.4 ± 2.9

0
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10.4 Revised solutions for 30th order

Nearly all the orbits which yielded values of lumped 30th-order harmonics

have e < 0.007 , and the corrections to the lumped harmonics are scarcely

significant. For 1964-52B with e = 0.023 , however, there is a reduction of 11%.

The corrected values of the lumped harmonics are given in Table 16.

The revised 30th-order solutions, with the Q values corrected for

1964-52B only, are given in Table 17. The values of S in Table 17 are the

same as in Table 8, and so is E , though one standard deviation has decreased.

For C , the value of c decreases from 0.88 to 0.86, and the standard deviations

are on average 3% lower than in Table 8. The changes in the residuals and in

Fig 4 are too small to be worth recording.

Table 16

Values of even-degree lumped harmonics

with G corrected

9Z0,2) t9-02 Correc-

Satellite 10 CS310 / ort factor
3 corr 3)Corr facof

1974-34A 596 ± 557 678 ± 650 0.002 0.999
1968-70A -34 ± 149 -623 ± 212* 0.002 0.999
1963-24B 46 ± 106 -253 ± 88 0.002 0.999
1965-14A -46 ± 23 -37 ± 19 0.003 0.998
1971-10B -54 ± 27 59 ± 80* 0.002 0.999
1970-111A 19.2 ± 4.9 4.1 ± 4.4 0.001 1.000
1971-13B 27.1 ± 5.5 6.0 ± 3.3 0.002 0.999
1967-42A -9.0 ± 4.5 -4.9 ± 10.9* 0.007 0.989
1971-54A -9.80 ± 0.58 8.99 ± 0.75 0.002 0.999
1964-52B(H) 20.3 ± 7.0 34 ± 36t 0.023 0.890
1964-52B(B) 35 ± 19* 46 ± 36t 0.023 0.890

Key: * Standard deviation x 2
t Standard deviation x 4

Table 17

Revised solutions for even-degree CZ,30 and SZ,30

k I09Et,30 10 9g,3L

30 -3.3 ± 0.9 7.4 ± 1.0

32 -8.4 ± 1.7 4.7 ± 1.7

34 -13.0 ± 2.1 -5.6 ± 2.4
36 -3.5±3.1 5.5± 3.9
38 7.0±3.1 3.8±4.0
40 4.7 ± 2.5 -4.0 ± 3.1
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11 CONCLUSIONS

The addition of two new orbit analyses, particularly that for the satellite

1965-09A, has led to great improvements in the standard deviations of many of the

15th-order coefficients of even degree: for degree 24, 26, 28 and 30 the standard

deviation is reduced by a factor of 3.1 on average; and for degree 32, 34 and 36

by a factor of 1.4 on average. The 15th-order coefficients of odd degree are not

significantly changed as a result of the addition of the one new satellite,

1968-70A. The new values for .the 15th-order coefficients with G corrected, as

given in Tables 14 and 15, have sd <2.0 x 10- 9 for all the 30 coefficients of

degree 15,16,17,...29, and the average standard deviation of these 30 coefficients

is 1.15 x 10- 9 , equivalent to an error of 0.7 cm in geoid height. This precision

is much better than has been achieved for any other order for so many coefficients.

Nominally the most accurate of our coefficients is C15 ,15 = (-20.4 ± 0.4) x 10

where the standard deviation is equivalent to less than 0.3 cm in geoid height.

With the 30th-order coefficients we only have solutions for even degree,

and only those of degree 30 and 32 are up to the standard of the previous

paragraph. These four values have a mean standard deviation of 1.3 x 10-
9 ,

equivalent to an error of 0.8 cm in geoid height.

Comparison with comprehensive geoid models, in which the coefficients are

nominally less accurate than our values, shows satisfactory agreement. For

15th order, only the GEM models8 ,14 are thought to be independent of ours; for

degree 15-23, GEM IOB differs from the corresponding values in our solution by

3.1 x 10 on average, and for GEM-TI the corresponding value is 2.4 x 10

This suggests that the nominal standard deviation of GEM-TI, 3.1 x 10- 9 on

average, is realistic. For 30th order and degree 30,32,34 and 36, our values

differ from the corresponding values given by the mean of four models by

3.3 x 10- 9; but for the models individually the differences are near 4 x 10- 9

on average. Again this suggests that the nominal standard deviations of the

models, mostly between 3 and 5 x 10- 9 , are quite realistic.

0

IU
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